Calculus AB

1-4
(Day 2)
Intermediate Value Theorem
Intermediate Value Theorem -
If a function f is continuous on $[a, b]$ and $k \varepsilon[f(a), f(b)]$,
then there exists a number $c \varepsilon[a, b]$ such that $f(c)=k$.

Greatest Integer function - $\langle 3,3\rangle$$f(x)=\\| x \rrbracket \quad(1,1) \quad(1.1,1)$	
$\lim _{x \rightarrow 2^{+}} f(x)=2 \quad(-1.1,-2)$	
$\lim _{x \rightarrow-} f(x)=1$	
	How do we get this on the graphing calculator?
$\lim _{x \rightarrow 2} f(x)=\varnothing$	$y_{0}=\operatorname{int}(x)$
Describe the continuity of $f(x)$.	
Nonremovable at E	

Explain why the function has a zero in the specified interval.
84) $f(x)=x^{3}+5 x-3,[0,1]$

$$
\begin{aligned}
& F(0)=-3 \\
& F(1)=3 \text { mest be a zere be tween }-3+3 \\
&
\end{aligned}
$$

Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of c guaranteed by the theorem.
92) $f(x)=x^{2}-6 x+8, \quad \begin{gathered}a \\ {[0,3],}\end{gathered} f(c)=0$

$$
\begin{aligned}
& f(a)=F(0)=8 \\
& F(b)=F(3)=-1 \\
& F(0)=0=x^{2}-6 x+8 \\
& 0=(x-4)(x-2) \\
& \{4,2\} \\
& C=2 \text { between }[0,3]
\end{aligned}
$$

Assignment:
Pg. 79
23-26 all,
59, 60,
63-71 odd,
77-80 all,
83, 91, 93, 95-97 all, 107, 114

